

19th June 2017

Maximising HPC performance
on AWS public cloud

How to profile application I/O patterns with Ellexus Mistral on an
Alces Flight high performance computing cluster

With the move to cloud computing comes a flexibility in the compute
environment that has never been experienced before. This flexibility is
great for scaling on demand and optimising on compute spend, but it
can introduce challenges when tuning and optimising applications.

It used to be possible to tune a high performance computing (HPC)
application and let it run for years, but major changes in compute,
memory and storage capabilities that can be reconfigured at the click
of a button mean that a new approach is needed for applications to be
able to run well in the cloud. When the infrastructure changes,
bottlenecks shift and previously masked problems can become
obvious. Whether doing financial modelling, cancer research or
designing the next super car, it’s never been a better time to take
advantage of what cloud computing can offer and ready your
applications for the change. One way of doing this is by profiling file I/O
and eliminating wasteful I/O patterns.

In this white paper, we look at how easy it is to spin up an HPC cluster
on Amazon Web Services (AWS) using Alces Flight and profile the
performance of a typical HPC application in that environment using
Mistral from Ellexus. The application we have chosen is a publicly
available genome pipeline from a well-respected cancer research
organisation. We were looking at I/O patterns and how to characterise
the requirements of the pipeline. The application was freely available
as a Docker container and we used a publicly available reference
genome and mutant sample to test it.

For more information
about the tools used
in this document,
visit:

www.ellexus.com

www.alces-flight.com

http://www.ellexus.com/
www.alces-flight.com

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

2

I/O profiling with Mistral

Mistral is an APM I/O profiling tool from Ellexus that protects against
bad I/O patterns. It is possible for applications to overwhelm shared
resources such as parallel file systems and to harm their own
performance with bad I/O patterns even when other optimisation
techniques have been used. Mistral protects against such applications
by being lightweight enough to run in protection mode all the time on
your applications and flexible enough to be able to run more detailed
tests to validate applications before they are run at scale.

In this study we configured Mistral with an I/O contract that gathered
a large amount of information on bandwidth, meta data and file system
performance to gain a detailed picture of the requirements of the
pipeline and the suitability of the compute environment.

Launching an Alces Flight cluster on AWS

Alces Flight Solo is a single-user HPC cluster environment, complete
with job scheduler and scientific applications, which can be used to
provide a familiar Linux cluster environment suitable for running
performance tests. Clusters can be created quickly and easily, with a
range of different methods available for the further customisation and
automatic deployment of HPC resources. Flight is compatible with a
range of public cloud platforms including AWS, Microsoft Azure and
IBM Bluemix as well as bare-hardware and on-premises private cloud
solutions.

A freely available community supported version of Alces Flight Solo is
available for use from the AWS Marketplace and provides a simple
method to quickly create an HPC cluster environment in a few
minutes. A step-by-step guide on getting started is included at the end
of this document.

Test set up

AWS set up
We chose to run the pipeline on an AWS m4.16xlarge instance as a
login node. This has 64 cores and 256GiB of memory, and 10,000Mbps
bandwidth to the storage. We used “gp2” AWS Elastic Block Store
with default settings for the test. The gp2 EBS is a general purpose
SSD that can handle up to 10,000 IOPS and 160 MB/s per volume.
These volumes have a dedicated 10Gb Ethernet network link to the
instance. This was more than sufficient to run the pipeline. We didn’t
want the test set up to introduce any bottlenecks in the test that
might affect the results.

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

3

Mistral I/O profiling set up
Mistral is configured via an I/O contract containing I/O rules. When a
rule is broken, a log message is generated detailing how much I/O was
performed. So that we could see what the pipeline was doing
throughout the run, a rule was written for every type of I/O and set to
1B or 1 I/O operation so that it would be triggered whenever any I/O
was performed. For more information on how to set Mistral I/O rules
consult the Mistral documentation on www.ellexus.com/downloads

The Mistral contract was further set up to measure reads, writes,
seeks, opens, access (also known as stat), create and delete
operations. Reads, writes and seeks were split by the size of the
operation with rules for the following ranges: 1B, 1B-32kB, 32kB-1MB,
1MB-10MB, 10MB+. We also monitored the performance of all these
operations with rules for mean and max latency.

Profiling results

Profiling results: overview
The pipeline took 10h21m to run. Mistral added an overhead of about
20% as it had all possible profiling options enabled and was gathering
a lot of analytics data. Although we have identified a number of areas
of improvement, it’s clear that a lot of work has gone into optimising
the pipeline. The possible optimisations that we’ve highlighted below
demonstrate that there is no substitute for profiling the I/O in a
production environment to really understand how an application will
perform.

Profiling results: 1B reads and writes
One of the first checks that we do is to look at small reads and writes.
It’s very common for older libraries to read data one byte at a time.
While it is possible to use some of the buffering operations available
in the glibc, most don’t and so every read or write results in a system
call, an operating system context switch and perhaps a call to the
storage. Even though the operating system and file system will try to
cache the I/O, the cache is likely to fetch and send data in small
chunks that are not good for file-system performance.

The pipeline read 857MB of data in 1B operations and wrote 3.26GB
of data 1B at a time. The writes happened over a period of about 40
minutes and were sustained at about a million per second. The reads
occurred in three sections lasting around 10 minutes at a similar rate.
The resultant bandwidth of around 1MB/s falls a long way short of
what the storage can deliver so depending on the level of
computation at that point in the pipeline, optimising the I/O may well
speed up the pipeline within that intense 70 minutes of very small

http://www.ellexus.com/downloads

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

4

I/O. As 10% of the pipeline is spent during this time, it’s worth
investigating.

A quick look at the Mistral log files tells us which program and which
files have most of the IB I/O activity. A sample program and file is
logged with each measurement. The 1B reads come from a program
called runASCAT.R and it only took a minute to locate the common R
call read.table() as the source of the 1B reads.

Profiling results: small I/O performance
The performance impact of 1B operations cannot be recorded by
Mistral because even at sub-optimal levels they are too fast to
measure, but we can look at slightly larger operations to see the
impact of small I/O operations.

There were enough I/O operations in the 1B-32kB range and the
32kB-1MB range to provide a comparison of read performance. The
performance was very fast because the system was over specified.
The performance difference on a cost-effective system would be
much more significant with slower I/O. Even so, you can see a big
performance difference between the smaller and larger reads as the
smaller I/O has larger context switch overhead and more cache
misses.

Read size range Number of reads Average read size Mean latency
per call per byte

1B-32kB 1.4 Billion 707 B 1.5 us 2.1 x10-3 us
32kB-1MB 2.3 Million 62 KB 2.7 us 4.3 x10-5 us

Almost all the writes that were larger than 1B were in a single range:
121GB written out on average 218 bytes at a time. This means there is
potentially an opportunity to make sure that the writes are buffered
as much as possible in user space before being flushed.

Profiling results: Meta-data
Like most genome pipelines, this pipeline creates small files
throughout and then deletes most of them right at the end. This can
put a strain on the file system, particularly if many pipelines do this on
shared storage at the same time.

In addition to the activity of creating and deleting files, the pipeline
has also been fitted with a progress monitor, which is a sensible
addition to a long-running application. This works by running stat() or
access() on the directory containing the temporary files and progress
is measured by how many it finds. While this is a simple and effective
measurement, towards the end of the pipeline there are nearly
20,000 files that are accessed every 30 seconds. When performed in

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

5

parallel this puts unnecessary load on the meta-data server which is
often affected by bad I/O patterns elsewhere. A simple redesign of
this mechanism would release the load and lower the risk of
overloading the meta-data server.

Conclusion

In this pipeline, optimising the small reads and writes seems like an
easy win to save the CPU as much as the storage. It would also be a
good idea to put the temporary files on instant-disks that are directly
attached to an instance and private. This would mitigate the effects of
hitting shared storage with so many small files and small I/O
operations.

The main conclusion of this study is that even well designed and well-
maintained code can hide I/O issues if the code has not been profiled
in a real environment. To run sub-optimal code in the cloud is an
obvious waste of money. Alces Flight and Ellexus Mistral make it easy
and quick to test the suitability and performance of applications in the
cloud to facilitate sizing and optimisation processes.

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

6

How to launch Mistral on a Docker container

The pipeline chosen was available as a Docker container. If the application is available in
another format then follow the instructions that come with Mistral on how to set up and
launch the application.

Step 1: Docker may not in be installed by default. To install Docker use apt-get or the
appropriate equivalent command.

Step 2: Download Mistral from www.ellexus.com/downloads, save the licence file in the
same directory, set up the contract or use the default contract that comes with Mistral.
Then set up the Mistral starter script starter.sh with the following parameters:

#!/bin/bash

export

MISTRAL_CONTRACT_MONITOR_GLOBAL=/ellexus/global_contract

export MISTRAL_LOG_MONITOR_GLOBAL=/ellexus/log

export MISTRAL_RLM_LICENSE=/ellexus/dev.lic

/ellexus/mistral <docker entrypoint>

Step 3: The last thing to do is to run the Docker image, adding the directory volumes to
make Mistral available inside the container namespace, overriding the entrypoint to

docker run -v mistral:ellexus/mistral --entrypoint

/ellexus/starter.sh <path to docker image>

http://www.ellexus.com/downloads

Maximising HPC performance on AWS public cloud: Ellexus and Alces Flight

7

Step by step for launching a cluster on AWS

The following steps were taken to provide an environment for the testing outlined above:

1. Create a user account on AWS, or get permission to use an existing account. The account
should be enabled to use EC2, Cloudformation and S3 services, and be authorized to
create new VPCs. New accounts typically include limit the EC2 resources which can be
launched – review the EC2 limits in place before choosing to launch compute clusters with
many compute nodes. Users should create or import an SSH keypair registered in the AWS
region they want to use.

2. In a web-browser, navigate to “AWS Marketplace” – the app-store for the AWS public
cloud. Search for “Alces Flight” and select the Solo Community edition. Review the
information on the product page and click on the “Subscribe” button when ready. There
is no charge for subscribing to the community edition of Flight Solo.

3. On the product launch page, choose the “Manual Launch” tab; choose the AWS region

where you want to run and choose the “Personal HPC compute cluster” deployment
option. Click the “Launch in Cloudformation console” button when ready.

4. Click the “Next” button to continue in the Cloudformation console; make the following

choices to launch your cluster:

a. Enter a name for your stack (e.g. “cluster1”)
b. Choose an existing Cluster Administrator SSH keypair from the drop-box
c. For the Access Network Address, use “0.0.0.0/0”
d. Choose the login node instance type “m4.16xlarge”
e. Choose the desired compute node type, number and spot price to bid. For example,
for the lowest cost nodes, choose a quantity of one “c4.large” type and set the spot bid
price to 0.01.
f. Choose the size of the login node system volume; this filesystem will be mounted
across all compute nodes in the cluster.

Click the “Next” button when ready; optionally, set any tags desired for the cluster instances
and click the “Next” button again. Review the settings chosen; when ready, select the
checkbox to allow creation of the cluster and click on the “Create” button.

Users are returned to the AWS CloudFormation console, which will report the status of the
cluster as it is created. Once the cluster stack status shows “CREATE_COMPLETE”, click on its
entry in the table and select the “Outputs” tab below. The cluster login node IP address will
be shown, along with the login user name. Use these with your SSH private key to log in to
your HPC cluster.

For more details of launching and customising your own HPC cluster on AWS, see the Alces
Flight online documentation:

http://docs.alces-flight.com/en/stable/launch-aws/launching_on_aws.html

http://docs.alces-flight.com/en/stable/launch-aws/launching_on_aws.html

