
Breeze Dockerfile Generator User Manual
2.12.0

© 2017 Ellexus Ltd

Breeze Dockerfile Generator User Manual

Table of Contents
1 Introduction..3
2 Installing Breeze Dockerfile Generator...3
3 Generating a Dockerfile..3
4 Building a Docker Image...4

4.1 Already Installed Packages..6
4.2 Adding Files Installed by Packages..7
4.3 Handling Errors when Installing Packages...7

2.12.0 Page 2

Breeze Dockerfile Generator User Manual

1 Introduction
Breeze Dockerfile Generator (breeze-docker-gen) automatically generates the
Dockerfile for your application. It does this by detecting run-time dependencies (all the
files and programs used by your application as it runs) then generating a Dockerfile
from this list. You can then pass this Dockerfile to Docker, which will build a Docker
container with your application and everything it needs inside.

2 Installing Breeze Dockerfile Generator
Download and extract your copy of breeze-docker-gen in a convenient directory. If
you have saved breeze-docker-gen_2.11.1_x86_64.tar.gz in your home directory,
then typing

tar -xzf breeze-docker-gen_2.11.1_x86_64.tar.gz

will unpack the program in ~/breeze-docker-gen_2.11.1_x86_64.

Before you can run Breeze Dockerfile Generator you must have a license and the
BREEZE_RLM_LICENSE environment variable must be set to the location of the license.
This can be either:

• The full pathname of a directory containing a license file.
• The IP address and port of the license server expressed as <ip-

address>:<port>. The port number used by the license server will usually be
5053.

For example:

export BREEZE_RLM_LICENSE=/home/ellexus/license/

or
export BREEZE_RLM_LICENSE=10.33.0.1:5053

If you do not have a license, please contact Ellexus on support@ellexus.com

3 Generating a Dockerfile
To "dockerize" an application called "myapp" in ~/myapplication you would cd to the
top level directory of your application and run breeze-docker-gen.sh. For example:

$ cd ~/myapplication
$ ~/breeze-docker-gen_2.11.1_x86_64/breeze-docker-gen.sh -f ~/tmp ./myapp

The -f command line option specifies a directory where breeze-docker-gen will store
its temporary files. Breeze Dockerfile Generator will report an error and exit if this
directory already exists. Similarly, if there is already a Dockerfile in the current
directory then breeze-docker-gen will ask whether it is OK to overwrite it.

WARNING: A Dockerfile already exists in this directory.
Is it OK to overwrite this file? [y/n]

2.12.0 Page 3

mailto:support@ellexus.com

Breeze Dockerfile Generator User Manual

The breeze-docker-gen.sh script first checks what packages are installed on your
system and then runs your application, recording all the files it uses. It then generates
a Dockerfile in the current directory.

Breeze Dockerfile Generator checks each file that your application uses.
• If the file is provided by a package installed on your system, it adds a command

to install that same package within the Docker image.
• If the file is within the directory tree containing your application, it adds a

command to COPY the file to the image.
• Otherwise it adds a comment to the Dockerfile which includes the name of the

file. In this case you'll need to decide whether the file really is needed, and if it
is, to modify the Dockerfile in some way to make the file available.

Once you have resolved any issues with the Dockerfile, it can be used to build an
image which includes all the files needed by your application, and you can remove the
directory you specified with the -f option.

rm -rf ~/tmp

4 Building a Docker Image
Read through the Dockerfile and check that it makes sense. The Dockerfile contains
COPY commands for any files within your application's directory tree that were
accessed by your application. These will be of the form:

COPY myfile1.txt /home/ellexus/myapplication/myfile1.txt

Some programs may test whether a file exists but they don't actually read the file. In
such cases the Dockerfile will contain a comment such as:

The following files are accessed but their contents are not read:
COPY file1.txt /home/ellexus/myapplication/file1.txt

You can uncomment the COPY command if you want to include such files in your
docker image.

Docker won't COPY a file which is a symbolic link if the link is to an absolute path, even
if that path is actually within the current directory. So if link-to-file1.txt is a
symbolic link to /home/ellexus/myapplication/file1.txt, then when you come to
build the Docker image you will get an error:

Step 5 : COPY link-to-file1.txt /home/ellexus/myapplication/link-to-file1.txt
2014/11/19 10:18:32 Forbidden path outside the build context: link-to-file1.txt
(/home/ellexus/myapplication/file1.txt)

If however the symbolic link is to a file within the same directory, and doesn't include
the whole path, the COPY should work.

$ ls -l link-to-file1.txt
lrwxrwxrwx 1 ellexus ellexus 9 Nov 19 10:26 link-to-file1.txt -> file1.txt

2.12.0 Page 4

Breeze Dockerfile Generator User Manual

Breeze Dockerfile Generator can't currently distinguish between these two scenarios,
so whenever it sees a symbolic link being used it puts a COPY command into the
Dockerfile but comments that line out. If you know that your application uses such a
file you can uncomment the line. If the Docker build fails then you'll have to modify the
symbolic link accordingly.

The following files are accessed, but are symbolic links:
COPY link-to-file1.txt /home/ellexus/myapplication/link-to-file1.txt

If your application reads a directory then you'll see a comment of the following form.
You can uncomment the COPY command to copy the whole directory into the container,
but this is probably not necessary as you'll already have copied the files which are
used.

The following directories are read:
COPY dir2 /home/ellexus/myapplication/dir2

If your application uses files outside of its directory tree then you'll also find a
comment in the form:

The following files are read, but are out of the current working directory:
/etc/myconfig

This would happen if your application used a file such as /etc/myconfig which wasn't
provided by any of the packages installed on your system. We can't automatically
include this file because docker build can only copy files which are "within" the
directory containing the Dockerfile. You'll need to adapt the Dockerfile to work around
this limitation, perhaps by putting a copy of myconfig in the application directory and
adding a line to the Dockerfile such as:

COPY myconfig /etc/myconfig

Similarly, you may see comments such as:

The following directories are accessed but their contents are not read, and
they are out of the current working directory:
/home/ellexus/tmp

If your application relies on these directories then you'll need to adapt the Dockerfile
so that they are included in the image.

The Dockerfile will include one line starting with ENV. This will replicate your
environment variables in the container. Some of these may be critical for your
application but most will probably be unnecessary. Only you will know which these are.

ENV TERM=xterm MAIL=/var/spool/mail/ellexus
HOSTNAME=localhost.localdomain

We recommend leaving these commands in the Dockerfile, but if you want to speed up
subsequent builds you can comment out any which you know are not used by your
application.

If your application listens for network connections on a socket 1234, then you should

2.12.0 Page 5

Breeze Dockerfile Generator User Manual

see an entry of the form:

Insert External Connections
EXPOSE 1234

See http://docs.docker.com/userguide/dockerlinks/ for more details.

You can now build your docker image by typing:

sudo docker build -t="nameofcontainer" .

(Don't forget the "dot" at the end of the command!) For more details of the build
process see https://docs.docker.com/userguide/dockerimages/#building-an-image-
from-a-dockerfile

The above command will not work if the Docker Daemon is not running. To start the
Docker Daemon, type:

sudo service docker start

4.1 Already Installed Packages
When Breeze Dockerfile Gen creates a Dockerfile it doesn't know which packages are
already installed in the base image, so it includes instructions to install all the
packages that are used. It's likely that some of the packages it tries to install will
already be installed, in which case the docker build command will see that the
image already contains the package and report Nothing to do.

You can speed up subsequent builds by commenting out the installation of
unnecessary packages, but you might prefer to leave them there in case you change
your choice of base image.

For example, when building a Dockerfile for a bash script on CentOS 7, the Dockerfile
included the following line:

RUN yum install bash-4.2.45-5.el7_0.4.x86_64

This package was already installed in the base CentOS image, so when the container
was built, docker build reported

Step 1 : RUN yum install bash-4.2.45-5.el7_0.4.x86_64
 ---> Running in d9b28f7aa3e9
Loaded plugins: fastestmirror
Determining fastest mirrors
 * base: mirror.for.me.uk
 * extras: mirrors.melbourne.co.uk
 * updates: mirrors.clouvider.net
Package bash-4.2.45-5.el7_0.4.x86_64 already installed and latest version
Nothing to do
 ---> 74c3f876e25a
Removing intermediate container d9b28f7aa3e

2.12.0 Page 6

Breeze Dockerfile Generator User Manual

4.2 Adding Files Installed by Packages
Breeze Dockerfile Generator determines which packages are installed on the system
and which files are associated with each package. It then traces your application,
recording each file which is accessed, and uses this information to deduce which
packages should be installed in the Docker image.

On a distribution such as Ubuntu the package management system (dpkg) records the
files which are installed on the system from each package, but doesn't record files
which are created by package-specific installation scripts. If your program accesses a
file which was created by one of these scripts, Breeze Dockerfile Generator has no way
of knowing that it was installed from a package and assumes that it must explicitly
add the file to the image.

For example, when generating a Dockerfile for a python application, you might see
comments relating to the .pyc files which were created when the python packages
were installed.

The following files are read, but are out of the current working directory:
/usr/lib/python2.7/codecs.pyc
/usr/lib/python2.7/contextlib.pyc

If this happens you should check that the relevant packages are either present in the
base image or will be installed by the RUN commands in the Dockerfile.

4.3 Handling Errors when Installing Packages
You might find that you get an error during the Docker build process. For example:

Step 2 : RUN apt-get -y install libpython2.7-minimal:amd64
 ---> Running in e66e938b2f44
Reading package lists...
Building dependency tree...
Reading state information...
E: Unable to locate package libpython2.7-minimal
E: Couldn't find any package by regex 'libpython2.7-minimal'

In this case you need to add the following line to the Dockerfile, just before the line
where the error is reported.

RUN apt-get update

Or you might prefer to combine the two RUN commands.

RUN apt-get update && RUN apt-get -y install libpython2.7-minimal:amd64

See https://docs.docker.com/articles/dockerfile_best-practices/#run for more details.

2.12.0 Page 7

	1 Introduction
	2 Installing Breeze Dockerfile Generator
	3 Generating a Dockerfile
	4 Building a Docker Image
	4.1 Already Installed Packages
	4.2 Adding Files Installed by Packages
	4.3 Handling Errors when Installing Packages

